4.7 Article

Stimulating full-length SMN2 expression by delivering bifunctional RNAs via a viral vector

期刊

MOLECULAR THERAPY
卷 14, 期 1, 页码 54-62

出版社

CELL PRESS
DOI: 10.1016/j.ymthe.2006.01.012

关键词

spinal muscular atrophy; SMN1 gene product; SMN2 gene product; alternative splicing; gene therapy

资金

  1. NINDS NIH HHS [R01 NS41584, R01 NS444494] Funding Source: Medline

向作者/读者索取更多资源

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that is the leading genetic cause of infant mortality. SMA is caused by the loss of survival motor neuron-1 (SMN1). In humans, a nearly identical copy gene is present, called SMN2. SMN2 is retained in all SMA patients and encodes an identical protein compared to SMN1. However, a single silent nucleotide difference in SMN2 exon 7 results in the production of a spliced isoform (called SMN07) that encodes a nonfunctional protein. The presence of SMN2 represents a unique therapeutic target since SMN2 has the capacity to encode a fully functional protein. Here we describe an in vivo delivery system for short bifunctional RNAs that modulate SMN2 splicing. Bifunctional RNAs derive their name from the presence of two domains: an antisense RNA sequence specific to a target RNA and an untethered RNA segment that serves as a binding platform for splicing factors. Plasmid-based and recombinant adeno-associated virus vectors were developed that expressed bifunctional RNAs that stimulated SMN2 exon 7 inclusion and full-length SMN protein in patient fibroblasts. These experiments provide a mechanism to modulate splicing from a variety of genetic contexts and demonstrate directly a novel therapeutic approach for SMA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据