4.7 Article

Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury

期刊

ANNALS OF NEUROLOGY
卷 63, 期 4, 页码 520-530

出版社

WILEY
DOI: 10.1002/ana.21359

关键词

-

资金

  1. NINDS NIH HHS [R01 NS056234, R37 NS045737, R01 NS054044-04, R01 NS045737, KO2NS41343, R37 NS045737-05, K02 NS041343, R37NS045737, 1R01NS054044, R01 NS054044, K02 NS041343-05] Funding Source: Medline

向作者/读者索取更多资源

Objective: Abnormal myelination is a major pathological sequela of chronic periventricular white matter injury in survivors of premature birth. We tested the hypothesis that myelination failure in chronic hypoxia-ischemia-induced periventricular white matter injury is related to persistent depletion of the oligodendrocyte (OL) precursor pool required to generate mature myelinating OLs. Methods: A neonatal rat model of hypoxia-ischemia was used where acute degeneration of late OL progenitors (preOLs) occurs via a mostly caspase-independent mechanism. The fate of OL lineage cells in chronic cerebral lesions was defined with OL lineage-specific markers. Results: Acute caspase-3-independent preOL degeneration from hypoxia-ischemia was significantly augmented by delayed preOL death that was caspase-3-dependent. Degeneration of preOLs was offset by a robust regenerative response that resulted in a several-fold expansion in the pool of surviving preOLs in chronic lesions. However, these preOLs displayed persistent maturation arrest with failure to differentiate and generate myelin. When preOL-rich chronic lesions sustained recurrent hypoxia-ischemia at a time in development when white matter is normally resistant to injury, an approximately 10-fold increase in caspase-dependent preOL degeneration occurred relative to lesions caused by a single episode of hypoxia-ischemia. Interpretation: The mechanism of myelination failure in chronic white matter lesions is related to a combination of delayed preOL degeneration and preOL maturation arrest. The persistence of a susceptible population of preOLs renders chronic white matter lesions markedly more vulnerable to recurrent hypoxia-ischemia. These data suggest that preOL maturation arrest may predispose to more severe white matter injury in preterm survivors that sustain recurrent hypoxia-ischemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据