4.6 Article Proceedings Paper

Adherent neural stem (NS) cells from fetal and adult forebrain

期刊

CEREBRAL CORTEX
卷 16, 期 -, 页码 I112-I120

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhj167

关键词

adult; EGF; FGF-2; mouse; neural; radial glia; stem cell

资金

  1. Medical Research Council [G9806702, G0800784, G0300058] Funding Source: Medline
  2. Medical Research Council [G9806702, G0300058] Funding Source: researchfish
  3. MRC [G9806702, G0300058] Funding Source: UKRI

向作者/读者索取更多资源

Stable in vitro propagation of central nervous system (CNS) stem cells would offer expanded opportunities to dissect basic molecular, cellular, and developmental processes and to model neurodegenerative disease. CNS stem cells could also provide a source of material for drug discovery assays and cell replacement therapies. We have recently reported the generation of adherent, symmetrically expandable, neural stem (NS) cell lines derived both from mouse and human embryonic stem cells and from fetal forebrain (Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A. 2005. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3(9):e283). These NS cells retain neuronal and glial differentiation potential after prolonged passaging and are transplantable. NS cells are likely to comprise the resident stem cell population within heterogeneous neurosphere cultures. Here we demonstrate that similar NS cell cultures can be established from the adult mouse brain. We also characterize the growth factor requirements for NS cell derivation and self-renewal. We discuss our current understanding of the relationship of NS cell lines to physiological progenitor cells of fetal and adult CNS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据