4.5 Article

Multiphoton excited fabricated nano and micro patterned extracellular matrix proteins direct cellular morphology

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.30680

关键词

cell adhesion; ECM; scaffolds; nanofabrication; tissue engineering

资金

  1. NIBIB NIH HHS [R01 EB000263] Funding Source: Medline

向作者/读者索取更多资源

We use multiphoton excited (MPE) photochemistry to fabricate patterned extracellular matrices (ECM) and to investigate the morphology of human dermal fibroblasts adhered to the resulting photocrosslinked linear structures of fibronectin (IN), fibrinogen (FG), and bovine serum albumin (BSA). These proteins were chosen to systematically investigate the roles of topography and ECM biochemistry on cell spreading, as fibroblasts bind directly to both IN and FG at RGD sites through known integrins, whereas BSA provides no comparable ECM cues for cell binding. MPE crosslinked patterns are created from parallel linear structures 600 nm in width, 200 mu m in length, and spaced by either 10 or 40 mu m. Immunofluorescence staining of IN and FG was used to assay the functionality of crosslinked proteins. The metrics of orientation, elongation, and cell perimeter were used to quantitate the resulting cellular behavior on the crosslinked protein patterns. These parameters all reflect statistical differences for cells on BSA, relative to the similar statistical behavior on fibronectin and fibrinogen. Cells on the BSA patterns are constrained by physical guidance and orientation between linear structures. In contrast, cells adhered on both IN and FG had a greater propensity to spread across adjacent structures, indicating the importance of cell matrix interactions. Focal adhesion staining of cells adhered to the protein structures revealed similar trends. These findings are consistent with our hypothesis that these crosslinked matrix protein structures are expected to direct cell adhesion and spreading and that the topography and ECM cues lead to different forms of guidance. (c) 2006 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据