4.7 Article

Adaptation of rat soleus muscle spindles after 21 days of hindlimb unloading

期刊

EXPERIMENTAL NEUROLOGY
卷 200, 期 1, 页码 191-199

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2006.02.003

关键词

electroneurography; passive incremental stiffness; soleus muscle; muscle spindle; plasticity; immunohistochemistry

向作者/读者索取更多资源

Spindle discharges are affected by muscle unloading, and changes in passive stiffness of the muscle-tendon unit may contribute to the changes in spindle solicitation. To test this hypothesis, we determined the spindle sensitivity from electroneurograms of the soleus nerve, and, concomitantly, we measured the incremental passive muscle tension. Both measurements were done from ramp and hold stretches imposed to the soleus muscle after the Achilles tendon was severed. The ratio between the spindle sensitivity and the passive stiffness gave a spindle efficacy index (SEI). The experiments were conducted on control rats (C, n = 12) and on rats that had undergone hindlimb unloading (HU, n = 12) for 21 days. The muscle threshold lengths for electroneurogram to discharge (neurogram length, L-n) and for detecting passive tension (slack length, L-s) were determined, and, when these lengths differed, the stretches were imposed at these two initial lengths. The contralateral muscles were used to count muscle spindles and spindle fibers (ATPase staining) and to identify MyHC isoforms by immunostaining. L-n and L-s values were identical for the C muscles, while after HU, L-n was significantly shorter than L-s, which indicated that spindle afferents were more sensitive since they discharged before any passive tension was developed by the soleus muscle. At L-n, spindle sensitivity and passive stiffness did not differ for C and HU muscles. Consequently, when calculated at this relatively short initial muscle length, the SEI was maintained (or even slightly increased) after HU. This held under dynamic conditions (ramp phase of the stretch) and under static conditions (hold phase of the stretch). At L-s, the dynamic and static incremental stiffness values increased significantly after HU. Under dynamic conditions, the spindle sensitivity also increased after HU but to a less degree than incremental stiffness, which led to a significant decrease in SEL Under static conditions, the spindle sensitivity presented a high increase, and, consequently, SEI was not modified. These functional changes were associated with structural adaptations: HU did not alter the total number of muscle spindles, but the number of spindles containing three nuclear chain fibers increased significantly. The main change in intrafusal MyHC content concerned the slow type I MyHC isoform. In conclusion, after a period of muscle unloading, the spindle discharges were maintained or even enhanced in several experimental conditions. This may be due to a better transmission of the external stretch to muscle spindles through stiffer elastic structures but also to own muscle spindle adaptations which reinforce the spindle sensitivity, notably under static conditions. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据