4.3 Article

Biocompatible polyhydroxybutyrate (PHB) production by marine Vibrio azureus BTKB33 under submerged fermentation

期刊

ANNALS OF MICROBIOLOGY
卷 65, 期 1, 页码 455-465

出版社

SPRINGER
DOI: 10.1007/s13213-014-0878-z

关键词

Marine Vibrio sp; Submerged fermentation; Polyhydroxyalkanoates; Polyhydroxybutyrates; Phylogenetic tree; FTIR analysis

资金

  1. Department of Ocean Development, Government of India [DOD/11 - MRDF/1/29/06]
  2. Centre for Marine Living Resources & Ecology, Ministry of Earth Sciences, Government of India [MOES/10-MLR/2/2007]

向作者/读者索取更多资源

Polyhydroxybutyrate (PHB) is known to have applications as medical implants and drug delivery carriers and is consequently in high demand. In the present study the possibilities of harnessing potential PHB-producing vibrios from marine sediments as a new source of PHB was investigated since marine environments are underexplored. Screening of polyhydroxyalkanoate (PHA)-producing vibrios from marine sediments was performed using a fluorescent plate assay followed by spectrophotometric analysis of liquid cultures. Out of 828 isolates, Vibrio sp. BTKB33 showed maximum PHA production of 0.21 g/L and PHA content of 193.33 mg/g of CDW. The strain was identified as Vibrio azureus based on phenotypic characterization and partial 16S rDNA sequence analysis. The strain also produced several industrial enzymes: amylase, caseinase, lipase, gelatinase, and DNase. The FTIR analysis of extracted PHA and its comparison with standard PHB indicated that the accumulated PHA is PHB. Bioprocess development studies for enhancing PHA production were carried out under submerged fermentation conditions. Optimal submerged fermentation conditions for enhanced intracellular accumulation of PHA production were found to be 35 A degrees C, pH -7, 1.5 % NaCl concentration, agitation at 120 rpm, 12 h of inoculum age, 2.5 % initial inoculum concentration, and 36 h incubation along with supplementation of magnesium sulphate, glucose, and ammonium chloride. The PHA production after optimization was found to be increased to 0.48 g/L and PHA content to 426.88 mg/g of CDW, indicating a 2.28-fold increase in production. Results indicated that V. azureus BTKB33 has potential for industrial production of PHB.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据