4.6 Article

Interleukin-6 protects retinal ganglion cells from pressure-induced death

期刊

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
卷 47, 期 7, 页码 2932-2942

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.05-1407

关键词

-

向作者/读者索取更多资源

PURPOSE. The response of retinal ganglion cells (RGCs) to ocular pressure in glaucoma likely involves signals from astrocytes and microglia. How glia-derived factors influence RGC survival at ambient and elevated pressure and whether the inflammatory cytokine interleukin-6 (IL-6) is a contributing factor were investigated. METHODS. Primary cultures of retinal astrocytes, microglia, and RGCs were prepared using immunomagnetic separation. Comparisons were made of RGC survival at ambient and elevated pressure (+70 mm Hg) and with pressure-conditioned medium from glia with, and depleted of, IL-6. RESULTS. Pressure elevated for 24 to 48 hours reduced RGC density, increased TUNEL labeling, and upregulated several apoptotic genes, including the early immediate genes c-jun and jun-B. Pressure-conditioned medium from astrocytes reduced RGC survival another 38%, while microglia medium returned RGC survival to ambient levels. These effects were unrelated to IL-6 in microglia medium. Neither astrocyte-nor microglia-conditioned medium affected ambient RGC survival unless depleted of IL-6, which induced a 63% and a 18% decrease in RGCs, respectively. Recombinant IL-6 equivalent to levels in glia-conditioned medium doubled RGC survival at elevated pressure. CONCLUSIONS. For RGCs at ambient pressure, IL-6 secreted from astrocytes and microglia under pressure is adequate to abate other proapoptotic signals from these glia. For RGCs challenged by elevated pressure, decreased IL-6 in astrocyte medium is insufficient to counteract these signals. Increased IL-6 in microglia medium counters not only proapoptotic signals from these cells but also the pressure-induced apoptotic cascade intrinsic to RGCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据