4.8 Article

Multiscale model intercomparisons of CO2 and H2O exchange rates in a maturing southeastern US pine forest

期刊

GLOBAL CHANGE BIOLOGY
卷 12, 期 7, 页码 1189-1207

出版社

WILEY
DOI: 10.1111/j.1365-2486.2006.01158.x

关键词

gas exchange; LAI dynamics; model comparison; model nesting; NEE

向作者/读者索取更多资源

We compared four existing process-based stand-level models of varying complexity (physiological principles in predicting growth, photosynthesis and evapotranspiration, biogeochemical cycles, and stand to ecosystem carbon and evapotranspiration simulator) and a new nested model with 4 years of eddy-covariance-measured water vapor (LE) and CO2 (Fc) fluxes at a maturing loblolly pine forest. The nested model resolves the 'fast' CO2 and H2O exchange processes using canopy turbulence theories and radiative transfer principles whereas slowly evolving processes were resolved using standard carbon allocation methods modified to improve leaf phenology. This model captured most of the intraannual variations in leaf area index (LAI), net ecosystem exchange (NEE), and LE for this stand in which maximum LAI was not at a steady state. The model comparisons suggest strong linkages between carbon production and LAI variability, especially at seasonal time scales. This linkage necessitates the use of multilayer models to reproduce the seasonal dynamics of LAI, NEE, and LE. However, our findings suggest that increasing model complexity, often justified for resolving faster processes, does not necessarily translate into improved predictive skills at all time scales. Additionally, none of the models tested here adequately captured drought effects on water and CO2 fluxes. Furthermore, the good performance of some models in capturing flux variability on interannual time scales appears to stem from erroneous LAI dynamics and from sensitivity to droughts that injects unrealistic flux variability at longer time scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据