4.7 Article

Adriamycin-induced, TNF-α-mediated central nervous system toxicity

期刊

NEUROBIOLOGY OF DISEASE
卷 23, 期 1, 页码 127-139

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2006.02.013

关键词

adriamycin; tumor necrosis factor alpha; mitochondrial respiration; p53; Bcl-xL; central nervous system; chemobrain

资金

  1. NCI NIH HHS [CA-94853, CA-80152] Funding Source: Medline
  2. NIA NIH HHS [AG-05119, AG-10836] Funding Source: Medline

向作者/读者索取更多资源

The clinical effectiveness of adriamycin (ADR), a potent chemotherapeutic, is known to be limited by severe cardiotoxic side effects. However, the effect of ADR on brain tissue is not well understood. It is generally thought that ADR is not toxic to the brain because ADR does not pass the blood-brain barrier. The present study demonstrates that ADR autofluorescence was detected only in areas of the brain located outside the blood-brain barrier, but a strong tumor necrosis factor (TNF) alpha immunoreactivity was detected in the cortex and hippocampus of ADR-treated mice. Systemic injection of ADR led to a decline in brain mitochondrial respiration via complex I substrate shortly after ADR treatment (P < 0.05). Cytochrome c release, increased caspase 3 activity, and TUNEL-positive cell death all were suggestive of apoptosis in brain following systemic ADR treatment. The levels of the known pro-apoptotic proteins, p53 and Bax, were increased in brain mitochondria at 3 h following ADR treatment and declined by 48 h. In contrast, the and-apoptotic protein, Bcl-xL, was increased later at 6 h post-ADR treatment and was sustained throughout 72 h. Furthermore, p53 migrated to mitochondria and interacted with Bcl-xL, supporting the hypothesis that mitochondria are targets of ADR-induced CNS injury. Neutralizing antibodies against circulating TNF completely abolished both the increased TNF in the brain and the observed mitochondrial injury in brain tissues. These results are consistent with the notion that TNF is an important mediator by which ADR induces central nervous system (CNS) injury. This study, the first to provide direct biochemical evidence of ADR toxicity to the brain, revealed novel mechanisms of ADR-induced CNS injury and suggests a potential therapeutic intervention against circulating TNF-induced CNS effects. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据