4.4 Article

Interpretation of palaeoweathering features and successive silicifications in the Tertiary regolith of inland Australia

期刊

JOURNAL OF THE GEOLOGICAL SOCIETY
卷 163, 期 -, 页码 723-736

出版社

GEOLOGICAL SOC PUBL HOUSE
DOI: 10.1144/0014-764905-020

关键词

-

向作者/读者索取更多资源

Detailed studies of morphological, micromorphological and geochemical characteristics of silcretes in the deep bleached and weathered regolith across a large area of inland Australia have provided a new interpretation of the history of the regolith and its climatic and morphological evolution during the Tertiary. Pedogenic silcretes have distinctive morphological and mineralogical features caused by a succession of phases of silica dissolution and recrystallization resulting from multiple episodes of water infiltration and percolation under alternately wet and dry climates. These are the oldest of the regolith features. Deep, bleached profiles formed over a wide area in a variety of substrates ranging from Precambrian granites to Palaeozoic sandstones, Cretaceous sediments and Tertiary deposits, and represent the second major stage in regolith development. These profiles, in which kaolinite coexists with gypsum, alunite and opal, formed by reaction of the substrates with saline groundwaters, the water-table levels of which progressively fell over the region. Extensive networks of termite burrows constructed to great depth in the bleached regolith followed the water tables down. The climate was warm and dry with a high water deficit. Groundwater silcretes formed near-horizontal lenses and pods of porcellanite and jasper in the bleached regolith. They preserve the primary fabric of the host rock. Groundwater sileretes post-date the construction of termite burrows and were formed during a rise in groundwater tables across the landscape, in places to near-surface environments in broad landscape depressions. The climate was more humid but the presence of gypsum during silicification demonstrates that the groundwaters were still saline. Red-brown hardpans are the youngest silicification features and represent periods of successive infiltration and percolation, and waterlogging, during high rainfall or flood events. They are confined to low regions in the landscape. Mineralogical and geochemical analysis of the bleached profiles, together with geochemical modelling, suggests that ferrolysis is the most likely cause of acidity in groundwater leading to the development of the bleach profiles and/or alunite. Present-day groundwater tables are both at low levels and sulphate-rich. It is possible that acidic alteration leading to bleaching is still active around the extensive playa landscapes in the region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据