4.2 Article

Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b

期刊

GENES TO CELLS
卷 11, 期 7, 页码 805-814

出版社

WILEY
DOI: 10.1111/j.1365-2443.2006.00984.x

关键词

-

向作者/读者索取更多资源

DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b cooperatively regulate cytosine methylation in CpG dinucleotides in mammalian genomes, providing an epigenetic basis for gene silencing and maintenance of genome integrity. Proper CpG methylation is required for the normal growth of various somatic cell types, indicating its essential role in the basic cellular function of mammalian cells. Previous studies using Dnmt1(-/-) or Dnmt3a(-/-)Dnmt3b(-/-) ES cells, however, have shown that undifferentiated embryonic stem (ES) cells can tolerate hypomethylation for their proliferation. In an attempt to investigate the effects of the complete loss of CpG DNA methyltransferase function, we established mouse ES cells lacking all three of these enzymes by gene targeting. Despite the absence of CpG methylation, as demonstrated by genome-wide methylation analysis, these triple knockout (TKO) ES cells grew robustly and maintained their undifferentiated characteristics. TKO ES cells retained pericentromeric heterochromatin domains marked with methylation at Lys9 of histone H3 and heterochromatin protein-1, and maintained their normal chromosome numbers. Our results indicate that ES cells can maintain stem cell properties and chromosomal stability in the absence of CpG methylation and CpG DNA methyltransferases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据