4.5 Article

Disruption of the plasma membrane stimulates rearrangement of microtubules and lipid traffic toward the wound site

期刊

JOURNAL OF CELL SCIENCE
卷 119, 期 13, 页码 2780-2786

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.03006

关键词

membrane resealing; microtubule; EB1; NBD C-6-ceramide

向作者/读者索取更多资源

Resealing of a disrupted plasma membrane requires Ca2+-regulated exocytosis. Repeated disruptions reseal more quickly than the initial wound. This facilitated response requires both Ca2+ and protein kinase C (PKC), and is sensitive to brefeldin A. There is also evidence that this response is polarized to the site where the cell membrane had previously been disrupted. Observations of GFP-tagged alpha-tubulin and end-binding protein 1 (EB1) revealed that membrane disruption initially induced disassembly of microtubules around the wound site, followed by elongation of microtubules toward the wound site. Recruitment of EB1 to microtubules required Ca2+ influx, but was independent of PKC. NBD C-6-ceramide, a probe for the Golgi apparatus and Golgi-derived lipids, initially stained the perinuclear region, and a portion of the probe was translocated to the wound site 5 minutes after wounding. Translocation of the lipids required microtubules and PKC activity, and was suppressed by low temperature. On the other hand, constitutive traffic of the lipid was still normal in the presence of a PKC inhibitor. These findings suggest that membrane disruption stimulates regulated vesicle traffic from the region of the trans-Golgi network to the wound site along rearranged microtubules in a PKC-dependent manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据