4.6 Article

A novel N-terminal hydrophobic motif mediates constitutive degradation of serum- and glucocorticoid-induced kinase-1 by the ubiquitin-proteasome pathway

期刊

FEBS JOURNAL
卷 273, 期 13, 页码 2913-2928

出版社

WILEY
DOI: 10.1111/j.1742-4658.2006.05304.x

关键词

endoplasmic reticulum; PtdIns-3K; SGK-1; stress signalling; ubiquitination

资金

  1. NCI NIH HHS [R01 CA 089208] Funding Source: Medline

向作者/读者索取更多资源

Serum- and glucocorticoid-induced protein kinase-1 (SGK-1) plays a critical role in regulation of the epithelial sodium channel, ENaC. SGK-1 also shares significant catalytic domain homology with protein kinase B (PKB/AKT-1) and is a downstream effector of antiapoptotic phosphoinositide 3-kinase signaling. Steady-state levels of an active SGK-1 are tightly regulated by rapid transcriptional activation and post-translational modification including phosphorylation. We show here that endogenous SGK-1 protein is polyubiquitinated and rapidly degraded by the 26S proteasome. In contrast to other rapidly degraded kinases, neither the catalytic activity of SGK-1 nor activation site phosphorylation was required for its ubiquitin modification and degradation. Instead, SGK-1 degradation required a lysine-less six-amino-acid (amino acids 19-24) hydrophobic motif (GMVAIL) within the N-terminal domain. Deletion of amino acids 19-24 significantly increased the half-life of SGK1 and prevented its ubiquitin modification. Interestingly, this minimal region was also required for the association of SGK-1 with the endoplasmic reticulum. Ubiquitin modification and degradation of SGK-1 were increasingly inhibited by the progressive mutation of six N-terminal lysine residues surrounding the GMVAIL motif. Mutation of all six lysines to arginine did not disrupt the subcellular localization of SGK-1 despite a significant decrease in ubiquitination, implying that this modification per se was not required for targeting to the endoplasmic reticulum. These results suggest that constitutive ubiquitin-mediated degradation of SGK-1 is an important mechanism regulating its biological activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据