4.6 Article

Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro

期刊

EXPERIMENTAL CELL RESEARCH
卷 312, 期 11, 页码 2107-2120

出版社

ELSEVIER INC
DOI: 10.1016/j.yexcr.2006.03.012

关键词

leukemia inhibitory factor; neural progenitor cell; neural stem cell; telomerase; telomere; p21

向作者/读者索取更多资源

Isolation of a true self-renewing stem cell from the human brain would be of great interest as a reliable source of neural tissue. Here, we report that human fetal cortical cells grown in epidermal growth factor expressed low levels of telomerase and telomeres in these cultures shortened over time leading to growth arrest after 30 weeks. Following leukemia inhibitory factor (LIF) supplementation, growth rates and telomerase expression increased. This was best demonstrated following cell cycle synchronization and staining for telomerase using immunocytochemistry. This increase in activity resulted in the maintenance of telomeres at approximately 7 kb for more than 60 weeks in vitro. However, all cultures displayed a lack of oligodendrotye production, decreases in neurogenesis over time and underwent replicative senescence associated with increased expression of p21 before 70 weeks in vitro. Thus, under our culture conditions, these cells are not stable, multipotent, telomerase expressing self-renewing stem cells. They may be more accurately described as human neural progenitor cells (hNPC) with limited lifespan and bi-potent potential (neurons/astrocytes). Interestingly, hNPC follow a course of proliferation, neuronal production and growth arrest similar to that seen during expansion and development of the human cortex, thus providing a possible model neural system. Furthermore, due to their high expansion potential and lack of tumorogenicity, these cells remain a unique and safe source of tissue for clinical transplantation. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据