4.7 Article

Progressive spinal axonal degeneration and slowness in ALS2-deficient mice

期刊

ANNALS OF NEUROLOGY
卷 60, 期 1, 页码 95-104

出版社

WILEY-LISS
DOI: 10.1002/ana.20888

关键词

-

资金

  1. NIA NIH HHS [K12 AG000975-04] Funding Source: Medline
  2. NINDS NIH HHS [R37 NS027036, NS27036] Funding Source: Medline

向作者/读者索取更多资源

Objective: Homozygous mutation in the ALS2 gene and the resulting loss of the guanine exchange factor activity of the ALS2 protein is causative for autosomal recessive early-onset motor neuron disease that is thought to predominantly affect upper motor neurons. The goal of this study was to elucidate how the motor system is affected by the deletion of ALS2. Methods: ALS2-deficient mice were generated by gene targeting. Motor function and upper and lower motor neuron pathology were examined in ALS2-deficient mice and in mutant superoxide dismutase 1 (SOD1) mice that develop ALS-like disease from expression of an ALS-linked mutation in SOD1. Results: ALS2-deficient mice demonstrated progressive axonal degeneration in the lateral spinal cord that is also prominent in mutant SOD1 mice. Despite the vulnerability of these spinal axons, lower motor neurons in ALS2-deficient mice were preserved. Behavioral studies demonstrated slowed movement without muscle weakness in ALS2(-/-) mice, consistent with upper motor neuron defects that lead to spasticicy in humans. Interpretation: The combined evidence from mice and humans shows that deficiency in ALS2 causes an upper motor neuron disease that in humans closely resembles a severe form of hereditary spastic paralysis, and that is quite distinct from amyotrophic lateral sclerosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据