4.5 Article

Calcium-regulated potassium currents secure respiratory rhythm generation after loss of glycinergic inhibition

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 24, 期 1, 页码 145-154

出版社

WILEY
DOI: 10.1111/j.1460-9568.2006.04877.x

关键词

after-hyperpolarization; deletion compensating responses; glycine receptor; respiratory rhythm generation; synaptic transmission and plasticity

向作者/读者索取更多资源

Mutant oscillator mice (Glra1(spd -/-)) are characterized by a developmental loss of glycinergic inhibition. These mice die during the third postnatal week presumably due to gradually increasing disturbances of breathing and motor behaviour. Some irregular rhythmic respiratory activity, however, is persevered until they die. Here we analysed cellular mechanisms that compensate for the loss of glycinergic inhibition and contribute to the maintenance of the respiratory rhythm. In a medullary slice preparation including the pre-Botzinger complex we performed a comparative analysis of after-hyperpolarizations following action potentials (AP-AHP) and burst discharges (burst-AHP) in identified respiratory neurons from oscillator and control mice. Both AHP forms were increased in neurons from oscillator mice. These changes were combined with an augmented adaptation of firing frequency. Assuming that oscillator mice might upregulate calcium-activated K currents (BKCa) in compensation for the loss of glycinergic inhibition, we blocked the big KCa conductances with iberiotoxin and verified that the respiratory rhythm was indeed arrested by BK channel blockade.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据