4.4 Article

Carboxyl terminus of Helicobacter pylori α1,3-fucosyltransferase determines the structure and stability

期刊

BIOCHEMISTRY
卷 45, 期 26, 页码 8108-8116

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi0601297

关键词

-

向作者/读者索取更多资源

Helicobacter pylori is well known as the primary cause of gastritis, duodenal ulcers, and gastric cancer. The pathogenic bacteria produces Lewis x and Lewis y epitopes in the O-antigens of lipopolysaccharides to mimic the carbohydrate antigens of gastric epithelial cells to avoid detection by the host's immune system. The enzyme alpha 1,3-fucosyltransferase from H. pylori catalyzes the glycosyl addition of fucose from the donor GDP-fucose to the acceptor N-acetyllactosamine. The poor solubility of the enzyme was resolved by systematic deletion of the C-terminus. We report here the first structural analysis using CD spectroscopy and analytical ultracentrifugation. The results indicate that up to 80 residues, including the tail rich in hydrophobic and positively charged residues (sequence 434-478) and 5 of the 10 tandem repeats of 7 amino acids each (399-433), can be removed without significant change in structure and catalysis. Half of the heptad repeats are required to maintain both the secondary and native quaternary structures. Removal of more residues in the C-terminus led to major structural alteration, which was correlated with the loss of enzymatic activity. In accordance with the thermal denaturation studies, the results support the idea that a higher number of tandem repeats functioning to facilitate a dimeric structure helps to prevent the protein from unfolding during incubation at higher temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据