4.6 Article

Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 27, 页码 18489-18498

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M603777200

关键词

-

资金

  1. NIAID NIH HHS [R01 AI43559] Funding Source: Medline

向作者/读者索取更多资源

Bacterial genome sequencing has provided a wealth of genetic data. However, the definitive functional characterization of hypothetical open reading frames and novel biosynthetic genes remains challenging. This is particularly true for genes involved in protein glycosylation because the isolation of their glycan moieties is often problematic. We have developed a focused metabolomics approach to define the function of flagellin glycosylation genes in Campylobacter jejuni 81-176. A capillary electrophoresis-electrospray mass spectrometry and precursor ion scanning method was used to examine cell lysates of C. jejuni 81-176 for sugar nucleotides. Novel nucleotide-activated intermediates of the pseudaminic acid (Pse5NAc7NAc) pathway and its acetamidino derivative (PseAm) were found to accumulate within select isogenic mutants, and use of a hydrophilic interaction liquid chromatography-mass spectrometry method permitted large scale purifications of the intermediates. NMR with cryo probe ( cold probe) technology was utilized to complete the structural characterization of microgram quantities of CMP-5-acetamido-7-acetamidino3,5,7,9-tetradeoxy-L-glycero-alpha-L-manno-nonulosonic acid (CMP-P-se5NAc7Am), which is the first report of Pse modified at C7 with an acetamidino group in Campylobacter, and UDP-2,4-diacetamido-2,4,6-trideoxy-alpha-D-glucopyranose, which is a bacillosamine derivative found in the N-linked protein glycan. Using this focused metabolomics approach, pseB, pseC, pseF, pseI, and for the first time pseA, pseG, and pseH were found to be directly involved in either the biosynthesis of CMP-Pse5NAc7NAc or CMP-Pse5NAc7Am. In contrast, it was shown that pseD, pseE, Cj1314c, Cj1315c, Cjb1301, Cj1334, Cj1341c, and Cj1342c have no role in the CMP-Pse5NAc7NAc or CMP-Pse5NAc7Am pathways. These results demonstrate the usefulness of this approach for targeting compounds within the bacterial metabolome to assign function to genes, identify metabolic intermediates, and elucidate novel biosynthetic pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据