4.8 Article

Design and partial load exergy analysis of hybrid SOFC-GT power plant

期刊

JOURNAL OF POWER SOURCES
卷 158, 期 1, 页码 225-244

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2005.07.088

关键词

SOFC; exergy; modeling

向作者/读者索取更多资源

This paper presents a full and partial load exergy analysis of a hybrid SOFC-GT power plant. The plant basically consists of: an air compressor, a fuel compressor, several heat exchangers, a radial gas turbine, mixers, a catalytic burner, an internal reforming tubular solid oxide fuel cell stack, bypass valves, an electrical generator and an inverter. The model is accurately described. Special attention is paid at the calculation of SOFC overpotentials. Maps are introduced, and properly scaled, in order to evaluate the partial load performance of turbomachineries. The plant is simulated at full-load and part-load operation, showing energy and exergy flows trough all its components and thermodynamic properties at each key-point. At full-load operation a maximum value of 65.4% of electrical efficiency is achieved. Three different part-load strategies are introduced. The off-design operation is achieved handling the following parameters: air mass flow rate, fuel mass flow rate, combustor bypass, gas turbine bypass, avoiding the use of a variable speed control system. Results showed that the most efficient part-load strategy corresponded to a constant value of the fuel to air ratio. On the other hand, a lower value of net electrical power (34% of nominal load) could be achieved reducing fuel flow rate, at constant air flow rate. This strategy produces an electrical efficiency drop that becomes 45%. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据