4.6 Article

Low-voltage operation of metal-ferroelectric-insulator-semiconductor diodes incorporating a ferroelectric polyvinylidene fluoride copolymer Langmuir-Blodgett film

期刊

JOURNAL OF APPLIED PHYSICS
卷 100, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2218463

关键词

-

向作者/读者索取更多资源

We report the electrical characteristics of metal-ferroelectric-insulator-semiconductor structures, where the ferroelectric layer is a Langmuir-Blodgett film of a copolymer of 70% vinylidene fluoride and 30% trifluoroethylene. The 36-nm thick copolymer films were deposited on thermally oxidized (10 nm SiO2) p-type silicon and covered with a gold gate electrode. Polarization-field hysteresis loops indicate polarization switching in the polymer film. The device capacitance shows hysteresis when cycling the applied voltage between +/- 3 V, exhibiting a zero-bias on/off capacitance ratio of over 3:1 and a symmetric memory window 1 V wide, with little evidence of bias that can arise from traps in the oxide. Model calculations are in good agreement with the data and show that film polarization was not saturated. The capacitance hysteresis vanishes above the ferroelectric-paraelectric transition temperature, showing that it is due to polarization hysteresis. The retention time of both the on and off states was approximately 15 min at room temperature, possibly limited by leakage or by polarization instability in the unsaturated film. These devices provide a basis for nonvolatile data storage devices with fast nondestructive readout. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据