4.8 Article

Fluorescence-based siderophore biosensor for the determination of bioavailable iron in oceanic waters

期刊

ANALYTICAL CHEMISTRY
卷 78, 期 14, 页码 5040-5045

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac060223t

关键词

-

向作者/读者索取更多资源

With direct evidence that iron is the chemical limitation of phytoplankton growth, particularly in the Southern Ocean, it is increasingly important to develop new tools that provide direct measurement of the bioavailable iron fraction in oceanic waters. Here we report the development of a fluorescence quenching-based siderophore biosensor capable of the in situ measurement of this ultratrace Fe(III) fraction at ambient pH (similar to 8). Parabactin was extracted from cultures of Paracoccus denitrificans. The purified siderophore was encapsulated within a spin-coated sol-gel thin film, which was subsequently incorporated in a flow cell system. The parabactin biosensor has been fully characterized for the detection of Fe(III) in seawater samples. The biosensor can be regenerated by lowering the pH of the flowing solution, thereby releasing the chelated Fe(III), enabling multiple use. The LOD of the biosensor was determined to be 40 pM, while for an Fe(III) concentration of 1 nM, a reproducibility with a RSD of 6% (n = 10) was obtained. The accuracy of the biosensing system has been determined through analysis of a certified seawater reference sample. Samples from the Atlantic Ocean have been analyzed using the parabactin biosensor providing a concentration vs depth profile for the bioavailable Fe(III) fraction in the 50 pM-1 nM range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据