4.8 Article

Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip

期刊

ANALYTICAL CHEMISTRY
卷 78, 期 14, 页码 4779-4785

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac060031y

关键词

-

资金

  1. NIDCR NIH HHS [1 U01 DE14961-01] Funding Source: Medline

向作者/读者索取更多资源

We discovered that a protein concentration device can be constructed using a simple one-layer fabrication process. Microfluidic half-channels are molded using standard procedures in PDMS; the PDMS layer is reversibly bonded to a glass base such as a microscope slide. The microfluidic channels are chevron-shaped, in mirror image orientation, with their apexes designed to pass within similar to 20 mu m of each other, forming a thin-walled section between the channels. When an electric field is applied across this thin-walled section, negatively charged proteins are observed to concentrate on the anode side of it. About 10(3)-10(6)-fold protein concentration was achieved in 30 min. Subsequent separation of two different concentrated proteins is easily achieved by switching the direction of the electric field in the direction parallel to the thin-walled section. We hypothesize that a nanoscale channel forms between the PDMS and the glass due to the weak, reversible bonding method. This hypothesis is supported by the observation that, when the PDMS and glass are irreversibly bonded, this phenomenon is not observed until a very high E-field was applied and dielectric breakdown of the PDMS is observed. We therefore suspect that the ion exclusion-enrichment effect caused by electrical double layer overlapping induces cationic selectivity of this nanochannel. This simple on-chip protein preconcentration and separation device could be a useful component in practically any PDMS-on-glass microfluidic device used for protein assays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据