4.7 Article

NAD(P)H:: quinone oxidoreductase 1 expression in multiple sclerosis lesions

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 41, 期 2, 页码 311-317

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2006.04.013

关键词

astrocytes; macrophages; multiple sclerosis; NAD(P)H : quinone oxidoreductase 1; oxidative stress

向作者/读者索取更多资源

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. (CNS), marked by infiltration of monocyte-derived macrophages in the brain parenchyma. Macrophages contribute to disease pathology by secretion of inflammatory mediators, such as reactive oxygen species (ROS). ROS are involved in various processes underlying MS pathology, including monocyte migration across the blood-brain barrier, phagocytosis and degradation of myelin, axonal degeneration, and oligodendrocyte damage. High concentrations of ROS cause oxidative stress, which induces transcriptional activation of phase 11 detoxification enzymes, such as the antioxidant protein NAD(P)H:quinone oxidoreductase 1 (NQO1). Since NQO1 expression may act as an indicator of oxidative stress and knowledge about the cellular distribution pattern of NQO1 in MS brains is lacking, we examined the expression of NQO1 in various well-characterized MS lesions. Here, we show for the first time that NQO1 is highly upregulated in active and chronic active MS lesions, particularly in hypertrophic astrocytes and myelin-laden macrophages. We hypothesize that increased NQO1 expression may reflect an endogenous defense response against ROS-mediated cellular toxicity. Compounds that induce the production of endogenous antioxidant enzymes, such as NQO1, may be potential targets for future treatment strategies in MS. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据