4.5 Article

Membrane protein simulations with a united-atom lipid and all-atom protein model: lipid-protein interactions, side chain transfer free energies and model proteins

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 18, 期 28, 页码 S1221-S1234

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/18/28/S07

关键词

-

向作者/读者索取更多资源

We have reparameterized the dihedral parameters in a commonly used united-atom lipid force field so that they can be used with the all-atom OPLS force field for proteins implemented in the molecular dynamics simulation software GROMACS. Simulations with this new combination give stable trajectories and sensible behaviour of both lipids and protein. We have calculated the free energy of transfer of amino acid side chains between water and 'lipid-cyclohexane', made of lipid force field methylene groups, as a hydrophobic mimic of the membrane interior, for both the OPLS-AA and a modified OPLS-AA force field which gives better hydration free energies under simulation conditions close to those preferred for the lipid force field. The average error is 4.3 kJ mol(-1) for water -'lipid-cyclohexane' compared to 3.2 kJ mol(-1) for OPLS-AA cyclohexane and 2.4 kJ mol(-1) for the modified OPLS-AA water 'lipid-cyclohexane'. We have also investigated the effect of different methods to combine parameters between the united-atom lipid force field and the united-atom protein force field ffgmx. In a widely used combination, the strength of interactions between hydrocarbon lipid tails and proteins is significantly overestimated, causing a decrease in the area per lipid and an increase in lipid ordering. Using straight combination rules improves the results. Combined, we suggest that using OPLS-AA together with the united-atom lipid force field implemented in GROMACS is a reasonable approach to membrane protein simulations. We also suggest that using partial volume information and free energies of transfer may help to improve the parameterization of lipid-protein interactions and point out the need for accurate experimental data to validate and improve force field descriptions of such interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据