4.4 Article

Simulating the evolution of signal transduction pathways

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 241, 期 2, 页码 223-232

出版社

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2005.11.024

关键词

computational simulation; signal transduction networks; evolution; chemotaxis; network modeling

向作者/读者索取更多资源

We use a generic model of a network of proteins that can activate or deactivate each other to explore the emergence and evolution of signal transduction networks and to gain a basic understanding of their general properties. Starting with a set of non-interacting proteins, we evolve a signal transduction network by random mutation and selection to fulfill a complex biological task. In order to validate this approach we base selection on a fitness function that captures the essential features of chemotactic behavior as seen in bacteria. We find that a system of as few as three proteins can evolve into a network mediating chemotaxis-like behavior by acting as a derivative sensor. Furthermore, we find that the dynamics and topology of such networks show many similarities to the natural chemotaxis pathway, that the response magnitude can increase with increasing network size and that network behavior shows robustness towards variations in some of the internal parameters. We conclude that simulating the evolution of signal transduction networks to mediate a certain behavior may be a promising approach for understanding the general properties of the natural pathway for that behavior. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据