4.8 Article

Synthesis of amphiphilic copolymers of poly(ethylene oxide) and poly(ε-caprolactone) with different architectures, and their role in the preparation of stealthy nanoparticles

向作者/读者索取更多资源

Well-defined copolymers of biocompatible poly(epsilon-caprolactone) (PCL) and poly(ethylene oxide) (PEO) are synthesized by two methods. Graft copolymers with a gradient structure are prepared by ring-opening copolymerization of epsilon-caprolactone (FCL) with a PEO macromonomer of the epsilon CL-type. The epsilon CL polymerization is initiated by a PEO macroinitiator to prepare diblock copolymers. These amphiphilic copolymers are used as stabilizers for biodegradable poly(DL-lactide) (PLA) nanoparticles prepared by a nanoprecipitation technique. The effect of the copolymer characteristic features (architecture, composition, and amount) on the nanoparticle formation and structure is investigated. The average size, size distribution, and stability of aqueous suspensions of the nanoparticles is measured by dynamic light scattering. For comparison, an amphiphilic random copolymer, poly(methyl methacrylate-co-methacrylic acid) (P(MMA-co-MA)), is synthesized. The stealthiness of the nanoparticles is analyzed in relation to the copolymer used as stabilizer. For this purpose, the activation of the complement system by nanoparticles is investigated in vitro using human serum. This activation is much less important whenever the nanoparticles are stabilized by a PEO-containing copolymer rather than by the P(MMA-co-MA) amphiphile. The graft copolymers with a gradient structure and the diblock copolymers with similar macromolecular characteristics (molecular weight and hydrophilicity) are compared on the basis of their capacity to coat PLA nanoparticles and to make them stealthy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据