4.7 Article

Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 125, 期 3, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2218845

关键词

-

向作者/读者索取更多资源

Computer simulations are employed to obtain subcritical isotherms of small finite sized systems inside the coexistence region. For all temperatures considered, ranging from the triple point up to the critical point, the isotherms gradually developed a sequence of sharp discontinuities as the system size increased from similar to 8 to similar to 21 molecular diameters. For the smallest system sizes, and more so close to the critical point, the isotherms appeared smooth, resembling the continuous van der Waals loop obtained from extrapolation of an analytic equation of state outside the coexistence region. As the system size was increased, isotherms in the chemical potential-density plane developed first two, then four, and finally six discontinuities. Visual inspection of selected snapshots revealed that the observed discontinuities are related to structural transitions between droplets (on the vapor side) and bubbles (on the liquid side) of spherical, cylindrical, and tetragonal shapes. A capillary drop model was developed to qualitatively rationalize these observations. Analytic results were obtained and found to be in full agreement with the computer simulation results. The analysis shows that the shape of the subcritical isotherms is dictated by a single characteristic volume (or length scale), which depends on the surface tension, compressibility, and coexistence densities. For small reduced system volumes, the model predicts that a homogeneous fluid is stable across the whole coexistence region, thus explaining the continuous van der Waals isotherms observed in the simulations. When the liquid and vapor free energies are described by means of an accurate mean-field equation of state and surface tensions from simulation are employed, the capillary model is found to describe the simulated isotherms accurately, especially for large systems (i.e., larger than about 15 molecular diameters) at low temperature (lower than about 0.85 times the critical temperature). This implies that the Laplace pressure differences can be predicted for drops as small as five molecular diameters, and as few as about 500 molecules. The theoretical study also shows that the extrema or apparent spinodal points of the finite size loops are more closely related to (finite system size) bubble and dew points than to classical spinodals. Our results are of relevance to phase transitions in nanopores and show that first order corrections to nucleation energies in finite closed systems are power laws of the inverse volume.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据