4.4 Article

Genetic instability and the quasispecies model

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 241, 期 2, 页码 216-222

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2005.11.018

关键词

genetic instability; quasispecies model; mathematical biology

向作者/读者索取更多资源

Genetic instability is a defining characteristic of cancers. Microsatellite instability (MIN) leads to by elevated point mutation rates, whereas chromosomal instability (CIN) refers to increased rates of losing or gaining whole chromosomes or parts of chromosomes during cell division. CIN and MIN are, in general, mutually exclusive. The quasispecies model is a very successful theoretical framework for the study of evolution at high mutation rates. It predicts the existence of an experimentally verified error catastrophe. This catastrophe occurs when the mutation rates exceed a threshold value, the error threshold, above which replicative infidelity is incompatible with cell survival. We analyse the semiconservative quasispecies model of both MIN and CIN tumors. We consider the role of post-methylation DNA repair in tumor cells and demonstrate that DNA repair is fundamental to the nature of the error catastrophe in both types of tumors. We find that CIN introduces a plateau in the maximum viable mutation rate for a repair-free model, which does not exist in the case of MIN. This provides a plausible explanation for the mutual exclusivity of CIN and MIN. (c) 2005 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据