4.4 Article

Ratio control variate method for efficiently determining high-dimensional model representations

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 27, 期 10, 页码 1112-1118

出版社

WILEY
DOI: 10.1002/jcc.20435

关键词

HDMR; high-dimensional systems; random sampling; control variate; Monte Carlo integration; atmospheric chemistry

向作者/读者索取更多资源

The High-Dimensional Model Representation (HDMR) technique is a family of approaches to efficiently interpolate high-dimensional functions. RS(Random Sampling)-HDMR is a practical form of HDMR based on randomly sampling the overall function, and utilizing orthonormal polynomial expansions to approximate the RS-HDMR component functions. The determination of the expansion coefficients for the component functions employs Monte Carlo integration, which controls the accuracy of the RS-HDMR interpolation. The control variate method is an established approach to improve the accuracy of Monte Carlo integration. However, this method is often not practical for an arbitrary function f(x) because there is no general way to find the analytical control variate function h(x), which needs to be very similar to f(x). In this article, we show that truncated RS-HDMR expansions can be used as h(x) for arbitrary f (x), and a more stable iterative ratio control variate method was developed for the determination of the expansion coefficients for the RS-HDMR component functions. As the asymptotic error (standard deviation) of the estimator given by the ratio control variate method is proportional to 1/N(sample size), it is more efficient than the direct Monte Carlo integration, whose error is proportional to 1/root N. In an illustration of a four-dimensional atmospheric model a few hundred random samples are sufficient to construct an RS-HDMR expansion by the ratio control variate method with an accuracy comparable to that obtained by direct Monte Carlo integration with thousands of samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据