4.7 Article Proceedings Paper

An analysis of the Peclet and Damkohler numbers for dehydrogenation reactions using molecular sieve silica (MSS) membrane reactors

期刊

CATALYSIS TODAY
卷 116, 期 1, 页码 12-17

出版社

ELSEVIER
DOI: 10.1016/j.cattod.2006.04.004

关键词

Damkohler and Peclet numbers; molecular sieve silica; membrane reactors; modelling; cyclohexane; dehydrogenation

向作者/读者索取更多资源

The use of membrane reactors in industrial processes leads to high efficiencies because the reaction equilibrium can be shifted towards high conversion and product formation. In addition, the combination of reaction and separation in a single unit operation leads to process simplification and probably hardware cost reduction. A key design factor for membrane reactors is the ratio of maximum reaction rate per volume over maximum permeation rate per volume, characterised by the product of Damkohler and Peclet numbers (DaPe). The smaller the DaPe number, the more effective the membrane reactor becomes. Using a membrane bed reactor with molecular sieve silica (NISS) membranes and the dehydrogenation of cyclohexane to benzene as the test reaction, we observe that cyclohexane conversion rates increased from 3% to 20% as the DaPe reduced from 80 to 1. The conversion is well predicted by a simple equilibrium model. The DaPe number provides a simple measure of the interaction of the reaction and separation effects and a method to evaluate the membrane reactor efficiency to optimise the design. (c) 2006 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据