4.4 Article

Functional dissection of SseF, a type III effector protein involved in positioning the Salmonella-containing vacuole

期刊

TRAFFIC
卷 7, 期 8, 页码 950-965

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1600-0854.2006.00454.x

关键词

intracellular pathogen; microtubule motor protein; type III secretion system

向作者/读者索取更多资源

Intracellular replication of Salmonella enterica requires the formation of a unique organelle termed Salmonella-containing vacuole (SCV). The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2-T3SS) has a crucial role in the formation and maintenance of the SCV. The SPI2-T3SS translocates a large number of effector proteins that interfere with host cell functions such as microtubule-dependent transport. We investigated the function of the effector SseF and observed that this protein is required to maintain the SCV in a juxtanuclear position in infected epithelial cells. The formation of juxtanuclear clusters of replicating Salmonella required the recruitment of dynein to the SCV but SseF-deficient strains were highly reduced in dynein recruitment to the SCV. We performed a functional dissection of SseF and defined domains that were important for translocation and the specific effector functions of this protein. Of particular importance was a hydrophobic domain in the C-terminal half that contains three putative transmembrane (TM) helices. Deletion of one of these TM helices ablated the effector functions of SseF. We observed that this domain was essential for the proper intracellular positioning of the SCV to a juxtanuclear, Golgi-associated localization. These data show that SseF, in concert with the effector proteins SifA and SseG mediate the precise positioning of the SCV by differentially modulating the recruitment of microtubule motor proteins to the SCV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据