4.7 Article Proceedings Paper

Thermodynamic bronsted basicity of clean MgO surfaces determined by their deprotonation ability:: Role of Mg2+-O2- pairs

期刊

CATALYSIS TODAY
卷 116, 期 2, 页码 196-205

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cattod.2006.01.030

关键词

basicity; Bronsted; Lewis; basic site; acidic site; deprotonation; Mg-O pair; MgO; surface; thermodynamics; kinetics; low coordination; oxide ions; FTIR; photoluminescence; protic molecules; propyne; methanol; catalysis; 2-methylbut-3-yn-2-ol

向作者/读者索取更多资源

The deprotonation ability of clean (i.e., carbonate- and hydroxyl-free) MgO surfaces of various morphologies towards protic molecules, such as propyne and methanol, is evaluated by following the adsorption modes and amount of dissociated species by FTIR. Photoluminescence is used to identify the nature of the oxide ions involved in deprotonation. The same trend is observed for propyne and methanol: (i) the amount of dissociated species increases with the relative concentration of oxide ions of low coordination O(LC)(2-), (ii) Mg(LC)(2+) also are involved in deprotonation. Only similar to 0.5% of O(LC)(2-) are implied in propyne deprotonation. Quantitative adsorption and IR measurements suggest that the deprotonating Mg(2+)O(2-) pairs involve 3- and 4- coordinated ions: Mg(3C)O(4C) and Mg(4C)O(3C). The pairs able to lead to deprotonation have to combine a strong Bronsted basic site O(LC)(2-), able to abstract a proton and a strong acidic Lewis site able to stabilize the anion generated by deprotonation. The deprotonation equilibrium position is related to the thermodynamic Bronsted basicity. The choice of protic molecules used to identify the catalytically active basic sites was justified a posteriori by the correlation between the relative amount of dissociated propyne and methanol species and the catalytic conversion of 2-methylbut-3-yn-2-ol (MBOH). (C) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据