4.4 Article

MgO-based tunnel junction material for high-speed toggle magnetic random access memory

期刊

IEEE TRANSACTIONS ON MAGNETICS
卷 42, 期 8, 页码 1935-1939

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMAG.2006.877743

关键词

MgO; magnetic random access memory (MRAM); magnetic tunnel junction (MTJ); toggle switching; tunneling magnetoresistance (TMR)

向作者/读者索取更多资源

We report the first demonstration of a magnetoresistive random access memory (MRAM) circuit incorporating MgO-based magnetic tunnel junction (MTJ) material for higher performance. We compare our results to those of AlOx-based devices, and we discuss the MTJ process optimization and material changes that made the demonstration possible. We present data on key MTJ material attributes for different oxidation processes and free-layer alloys, including resistance distributions, bias dependence, free-layer magnetic properties, interlayer coupling, breakdown voltage, and thermal endurance. A tunneling magnetoresistance (TMR) greater than 230% was achieved with CoFeB free layers and greater than 85% with NiFe free layers. Although the TMR with NiFe is at the low end of our MgO comparison, even this MTJ material enables faster access times, since its TMR is almost double that of a similar structure with an AlOx barrier. Bit-to-bit resistance distributions are somewhat wider for MgO barriers, with sigma about 1.5% compared to about 0.9% for AlOx. The read access time of our 4 Mb toggle MRAM circuit was reduced from 21 ns with AlOx to a circuit-limited 17 ns with MgO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据