4.7 Article

Modulation of PsbS and flexible vs sustained energy dissipation by light environment in different species

期刊

PHYSIOLOGIA PLANTARUM
卷 127, 期 4, 页码 670-680

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1399-3054.2006.00698.x

关键词

-

向作者/读者索取更多资源

Contrasting acclimation strategies of photosynthesis and photoprotection were identified for annual mesophytes (spinach, pumpkin, and Arabidopsis) vs the tropical evergreen Monstera deliciosa. The annual species utilized full sunlight for photosynthesis to a much greater extent than the evergreen species. Conversely, the evergreen species exhibited a greater capacity for photoprotective thermal energy dissipation as well as a greater expression of the PsbS protein in full sun than the annual species. In all species, the majority of thermal energy dissipation [assessed as non-photochemical fluorescence quenching (NPQ)] was the flexible, Delta pH-dependent form of NPQ over the entire range of growth light environments. However, in response to a transfer of shade-grown plants to high light, the evergreen species exhibited a high level of sustained thermal dissipation (ql), but the annual species did not. This sustained energy dissipation in the evergreen species was not Delta pH-dependent nor did the low level of PsbS in shade leaves increase upon transfer to high light for several days. Sustained Delta pH-independent NPQ was correlated (a) initially, with sustained DI protein phosphorylation and xanthophyll cycle arrest and U subsequently, with an accumulation over several days of PsbS-related one-helix proteins and newly synthesized zeaxanthin and lutein.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据