4.7 Article Proceedings Paper

High strength ductile Cu-base metallic glass

期刊

INTERMETALLICS
卷 14, 期 8-9, 页码 876-881

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.intermet.2006.01.003

关键词

glasses; metallic; mechanical properties at ambient temperature; work-hardening; microstructure

向作者/读者索取更多资源

Usually, bulk metallic glasses exhibit strength values superior to conventional crystalline alloys, often combined with a large elastic limit and rather low Young's modulus. This combination of properties renders such alloys quite unique when compared to commercial materials. However, the major drawback for engineering applications is their limited room temperature ductility and toughness due to the localized deformation processes linked to shear banding, where high plastic deformation is accumulated in a very narrow region without contributing to macroscopic deformation, work hardening or yielding. In this work we report on a new class of metallic glass in a simple Cu-base alloy. Addition of 5 at.% Al increases the glass-forming ability of binary Cu50Zr50. The resulting Cu47.5Zr47.5Al5 glass exhibits high strength (2265 MPa) together with large room temperature ductility up to 18%. After yielding a strong increase in the flow stress is observed during deformation. The structure of the metallic glass exhibits atomic-scale heterogeneities that enable easy nucleation and continuous multiplication of shear bands. The interaction and intersection of shear bands increases the flow stress of the material with further deformation, leading to a 'work hardening'-like behavior and yields a continuous rotation of the shear angle up to fracture resulting in a high compressive ductility. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据