4.4 Article

Fabrication and use of high-speed, concentric H+- and Ca2+-selective microelectrodes suitable for in vitro extracellular recording

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 96, 期 2, 页码 919-924

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00258.2006

关键词

-

资金

  1. NINDS NIH HHS [NS-32123] Funding Source: Medline

向作者/读者索取更多资源

Ion-selective microelectrodes (ISMs) have been used extensively in neurophysiological studies. ISMs selective for H+ and Ca2+ are notable for their sensitivity and selectivity, but suffer from a slow response time, and susceptibility to noise because of the high electrical resistance of the respective ion exchange cocktails. These drawbacks can be overcome by using a coaxial or concentric inner micropipette to shunt the bulk of the ion exchanger resistance. This approach was used decades ago to record extracellular [Ca2+] transients in cat cortex, but has not been subsequently used. Here, we describe a method for the rapid fabrication of concentric pH- and Ca2+-selective microelectrodes useful for extracellular studies in brain slices or other work in vitro. Construction was simplified compared with previous implementations, by using commercially available, thin-walled borosilicate glass, drawing an outer barrel with a rapid taper ( similar to a patch pipette), and by use of a quick and reliable silanization procedure. Using a piezoelectric stepper to effect a rapid solution change, the response time constants of the concentric pH and Ca2+-electrodes were 14.9 +/- 1.3 and 5.3 +/- 0.90 ms, respectively. Use of these concentric ISMs is demonstrated in rat hippocampal slices. Activity-dependent, extracellular pH, and [Ca2+] transients are shown to arise two- to threefold faster, and attain amplitudes two- to fourfold greater, when recorded by concentric versus conventional ISMs. The advantage of concentric ISMs for studies of ion transport and ion diffusion is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据