4.7 Review

First-principles modelling of Earth and planetary materials at high pressures and temperatures

期刊

REPORTS ON PROGRESS IN PHYSICS
卷 69, 期 8, 页码 2365-2441

出版社

IOP Publishing Ltd
DOI: 10.1088/0034-4885/69/8/R03

关键词

-

资金

  1. Engineering and Physical Sciences Research Council [EP/C546385/1] Funding Source: researchfish
  2. Natural Environment Research Council [NER/O/S/2001/01227, NE/C51889X/1] Funding Source: researchfish
  3. EPSRC [EP/C546385/1] Funding Source: UKRI

向作者/读者索取更多资源

Atomic-scale materials modelling based on first-principles quantum mechanics is playing an important role in the science of the Earth and the other planets. We outline the basic theory of this kind of modelling and explain how it can be applied in a variety of different ways to probe the thermodynamics, structure and transport properties of both solids and liquids under extreme conditions. After a summary of the density functional formulation of quantum mechanics and its practical implementation through pseudopotentials, we outline the simplestway of applying first-principles modelling, namely static zero-temperature calculations. We show how calculations of this kind can be compared with static compression experiments to demonstrate the accuracy of first-principles modelling at pressures reached in planetary interiors. Noting that virtually all problems concerning planetary interiors require an understanding of materials at high temperatures as well as high pressures, we then describe how first-principles lattice dynamics gives a powerful way of investigating solids at temperatures not too close to the melting line. We show how such calculations have contributed to important progress, including the recent discovery of the post-perovskite phase of MgSiO3 in the D '' layer at the base of the Earth's mantle. A range of applications of first-principles molecular dynamics are then reviewed, including the properties of metallic hydrogen in Jupiter and Saturn, of water, ammonia and methane in Uranus and Neptune, and of oxides and silicates and solid and liquid iron and its alloys in the Earth's deep interior. Recognizing the importance of phase equilibria throughout the planetary sciences, we review recently developed techniques for the first- principles calculation of solid and liquid free energies, melting curves and chemical potentials of alloys. We show how such calculations have contributed to an improved understanding of the temperature distribution and the chemical composition throughout the Earth's interior. The review concludes with a summary of the present state of the field and with some ideas for future developments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据