4.7 Article

Photolytic degradation of quinalphos in natural waters and on soil matrices under simulated solar irradiation

期刊

CHEMOSPHERE
卷 64, 期 8, 页码 1375-1382

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2005.12.020

关键词

quinalphos; photolysis; sunlight; fate; degradation products

向作者/读者索取更多资源

The photochemical persistence of quinalphos, one of the most widely used organophosphorous insecticides, was investigated in a variety of environmental matrices such as natural waters and soils of different composition. Simulated solar irradiation was obtained using a xenon are lamp (Suntest CPS+ apparatus) giving an irradiation intensity of 750 W m(-2) equivalent to a light dose per hour of irradiation of 2700 kJ m(-2). The phototransformation rates were determined using solid-phase microextraction (SPME) and ultrasonic extraction (USE) coupled to GC-FTD, while the identification of photoproducts was carried out by GC-MS. In water samples, the degradation kinetics followed a pseudo-first-order reaction and photolysis half-lives ranged between 11.6 and 19.0 h depending on the constitution of the irradiated media. Dissolved organic matter (DOM) has a predominant retarding effect, while nitrate ions accelerated the photodegradation kinetics. In soil samples, the degradation kinetics was monitored on I turn soil layer prepared on glass TLC plates. The kinetic behaviour of quinalphos was complex and characterized by a double step photoreaction, fast in the first 4 h of irradiation followed by a slow degradation rate up to 64 h. The photolysis half-life of quinalphos was shorter in sandy soil compared to the rest of the soil samples, varying between 16.9 and 47.5 h, and showing a strong dependence on the composition of the irradiated media. Among the transformation products formed mainly through photohydrolysis and photoisomerization processes, some photoproduct structures were proposed according to their mass spectral information. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据