4.0 Review

Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration - Lessons from in vivo studies in mice and rats

期刊

BRAIN RESEARCH REVIEWS
卷 51, 期 2, 页码 293-299

出版社

ELSEVIER
DOI: 10.1016/j.brainresrev.2005.12.001

关键词

peripheral nerve regeneration; spinal ganglia; mouse mutant; rat model

向作者/读者索取更多资源

Diffusible and substratum-bound molecules regulate development and regeneration of the peripheral nervous system. The understanding of physiological function of these factors could have an impact on the development of new therapeutic strategies to stimulate nerve regeneration across long gaps. Within the group of trophic factors, basic fibroblast growth factor (FGF-2) and its high-affinity receptors are expressed in the intact peripheral nervous system and regulated following nerve injury. After exogenous application, FGF-2 promotes neuronal survival and neurite outgrowth in vitro and in vivo. In this review, animal studies on the physiological role of the endogenous FGF-2 system and the regenerative capacity after exogenous FGF-2 administration are summarized. The concept of FGF-2 function is discussed in context with other growth factors that are also physiologically relevant in the peripheral nervous system. Studies of sciatic nerve axotomy in FGF-2- and FGF receptor (R) 3-deleted mice, respectively, strongly suggested that FGF-2 binding to FGFR3 is involved in injury-induced neuronal apoptosis. At the lesion site, inhibition of myelination and stimulation of Schwarm cell proliferation by FGF-2 via FGFR1/2 is suggested from rat and mouse studies, whereas neurite formation is very likely enhanced via FGFR3 activation. Additionally to these demonstrated physiological functions of endogenous FGF-2, administration of FGF-2 isoforms in the rat model of nerve regeneration across long gaps revealed a role of the high molecular weight isoforms of FGF-2 on sensory recovery. Within the group of physiologically relevant trophic factors, the FGF-2 system seems to be crucially involved in the scenario of peripheral nerve development and regeneration. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据