4.4 Article

Efficient estimation of detailed single-neuron models

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 96, 期 2, 页码 872-890

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00079.2006

关键词

-

向作者/读者索取更多资源

Biophysically accurate multicompartmental models of individual neurons have significantly advanced our understanding of the input-output function of single cells. These models depend on a large number of parameters that are difficult to estimate. In practice, they are often hand-tuned to match measured physiological behaviors, thus raising questions of identifiability and interpretability. We propose a statistical approach to the automatic estimation of various biologically relevant parameters, including 1) the distribution of channel densities, 2) the spatiotemporal pattern of synaptic input, and 3) axial resistances across extended dendrites. Recent experimental advances, notably in voltage-sensitive imaging, motivate us to assume access to: i) the spatiotemporal voltage signal in the dendrite and ii) an approximate description of the channel kinetics of interest. We show here that, given i and ii, parameters 1-3 can be inferred simultaneously by nonnegative linear regression; that this optimization problem possesses a unique solution and is guaranteed to converge despite the large number of parameters and their complex nonlinear interaction; and that standard optimization algorithms efficiently reach this optimum with modest computational and data requirements. We demonstrate that the method leads to accurate estimations on a wide variety of challenging model data sets that include up to about 104 parameters ( roughly two orders of magnitude more than previously feasible) and describe how the method gives insights into the functional interaction of groups of channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据