4.7 Article

Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis

期刊

PLANT CELL REPORTS
卷 25, 期 8, 页码 865-876

出版社

SPRINGER
DOI: 10.1007/s00299-006-0127-4

关键词

Avicennia marina; catalase; Cu-ZnSOD; ferritin; ROS

向作者/读者索取更多资源

Plant photosynthesis results in the production of molecular oxygen. An inevitable consequence of this normal process is the production of reactive oxygen species (ROS) by the transfer of electrons to molecular oxygen. Plants are adequately protected by the presence of multiple antioxidative enzymes in different organelles of the plant such as chloroplasts, cytosol, mitochondria and peroxisomes. Under high light and CO2 limiting conditions caused by environmental stress like salinity, these antioxidative enzymes play an important role in scavenging toxic radicals. To investigate the functions of antioxidative enzymes in a mangrove plant, we isolated three cDNAs encoding cytosolic Cu-Zn SOD (Sod1), catalase (Cat1) and ferritin (Fer1) from Avicennia marina cDNA library. Sod1, Cat1 and Fer1 cDNA encoded full-length proteins with 152, 492 and 261 amino acids respectively. We studied the expression of these antioxidant genes in response to salt, iron, hydrogen peroxide, mannitol and light stress by mRNA expression analysis. Cat1, Fer1 showed short-term induction while Sod1 transcript was found to be unaltered in response to NaCl stress. A decrease in mRNA levels was observed for Sod1, Cat1 while Fer1 mRNA levels remained unaltered with osmotic stress treatment. Sod1, Cat1 and Fer1 mRNA levels were induced by iron, light stress and by direct H2O2 stress treatment, thus confirming their role in oxidative stress response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据