4.6 Article

Particle size dependence of magnetization and phase transition near TN in multiferroic BiFeO3

期刊

JOURNAL OF APPLIED PHYSICS
卷 100, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2229667

关键词

-

向作者/读者索取更多资源

We report results of a comprehensive study of the phase transition at T-N (similar to 643 K) as a function of particle size in multiferroic BiFeO3 system. We employed electrical, thermal, and temperature dependent x-ray diffraction studies in order to characterize the transition in a host of samples. We also carried out detailed magnetic measurements over a temperature regime of 2-300 K under a magnetic field of 100-10 000 Oe both on bulk and nanocrystalline systems. While in the bulk system a sharp endothermic peak at T-N together with a broad feature, ranging over nearly similar to 100 K (Delta T), could be observed in calorimetry, the nanoscale systems exhibit only the broad feature. The characteristic dielectric anomaly, expected at T-N, is found to occur both at T-O and T-N across Delta T in the bulk sample. The Maxwell-Wagner component due to interfaces between heterogenous regions with different conductivities is also present. The magnetic properties, measured at lower temperature, corroborate our observations in calorimetry. The metastability increases in the nanoscale BiFeO3 with divergence between zero-field cooled and field cooled magnetizations below similar to 100 K and faster magnetic relaxation. Interestingly, in nanoscale BiFeO3 one also observes finite coercivity at lower temperature, which points out that suitable design of particle size and shape may induce ferromagnetism. The inhomogeneous distribution of Bi/Fe ions and/or oxygen nonstoichiometry seems to be giving rise to broad features in thermal, magnetic as well as electrical responses. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据