4.5 Article

Pre-processing in biochemometrics: correction for path-length and temperature effects of water in FTIR bio-spectroscopy by EMSC

期刊

JOURNAL OF CHEMOMETRICS
卷 20, 期 8-10, 页码 402-417

出版社

WILEY
DOI: 10.1002/cem.1015

关键词

bio-spectroscopy; biochemometrics; ATR; FTIR; water; temperature; EMSC; in vivo; C. albicans

向作者/读者索取更多资源

The term 'biochemometrics' is proposed. Methodology is presented for simplifying high-resolution phenotyping measurements, in terms of multivariate modelling methods in order to stabilise FTIR bio-spectroscopy data. Irrelevant gas contributions from water vapour and CO2 in the instrument light path are modelled and removed, in order to avoid having to wait for N-2 purging. Variations in the infrared spectroscopy (IR) spectrum of water with temperature are described in terms of two model component spectra. These additive water variations are quantified and eliminated by Extended Multiplicative Signal Correction (EMSC), along with various physical signal variations of additive and multiplicative nature due to, for example, sample or instrument temperature. Sample temperature is predicted from the EMSC model parameters. The models developed for Attenuated Total Reflection (ATR) measurements of pure water at different temperatures are tested successfully in independent water samples as well as in the in vivo monitoring of Candida albicans growing and decaying on the ATR crystal of the same instrument. Copyright (c) 2007 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据