4.8 Article

Vascularized organoid engineered by modular assembly enables blood perfusion

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0602740103

关键词

collagen gel modules; endothelial cells; tissue engineering

资金

  1. NIBIB NIH HHS [EB001013, R21 EB001013] Funding Source: Medline

向作者/读者索取更多资源

Tissue engineering is one approach to address the donor-organ shortage, but to attain clinically significant viable cell densities in thick tissues, laboratory-constructed tissues must have an internal vascular supply. We have adopted a biomimetic approach and assembled microscale modular components, consisting of submillimeter-sized collagen gel rods seeded with endothelial cells (ECs) into a (micro)vascularized tissue; in some prototypes the gel contained HepG2 cells to illustrate the possibilities. The EC-covered modules then were assembled into a larger tube and perfused with medium or whole blood. The interstitial spaces among the modules formed interconnected channels that enabled this perfusion. Viable cell densities were high, within an order of magnitude of cell densities within tissues, and the percolating nature of the flow through the construct was evident in microcomputed tomography and Doppler ultrasound measurements. Most importantly, the ECS retained their nonthrombogenic phenotype and delayed clotting times and inhibited the loss of platelets associated with perfusion of whole blood through the construct. Unlike the conventional scaffold and cell-seeding paradigm of other tissue-engineering approaches, this modular construct has the potential to be scalable, uniform, and perfusable with whole blood, circumventing the limitations of other approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据