4.5 Article

Experimental and numerical analysis of the friction drilling process

出版社

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.2193554

关键词

-

向作者/读者索取更多资源

Friction drilling is a nontraditional hole-making process. A rotating conical tool is applied to penetrate a hole and create a bushing in a single step without generating chips. Friction drilling relies on the heat generated from the frictional force between the tool and sheet metal workpiece to soften, penetrate, and deform the work-material into a bushing shape. The mechanical and thermal aspects of friction drilling are studied in this research. Under the constant tool feed rate, the experimentally measured thrust force and torque were analyzed. An infrared camera is applied to measure the temperature of the tool and workpiece. Two models are developed for friction drilling. One is the thermal finite element model to predict the distance of tool travel before the workpiece reaches the 250 degrees C threshold temperature that is detectable by an infrared camera. Another is a force model to predict the thrust force and torque in friction drilling based on the measured temperature, material properties, and estimated area of contact. The results of this study are used to identify research needs and. build the foundation for future friction drilling process optimization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据