4.6 Article

GLAaS: An absolute dose calibration algorithm for an amorphous silicon portal imager. Applications to IMRT verifications

期刊

MEDICAL PHYSICS
卷 33, 期 8, 页码 2839-2851

出版社

AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS
DOI: 10.1118/1.2218314

关键词

EPID dosimetry; portal dosimetry; IMRT verification; amorphous silicon

向作者/读者索取更多资源

A new calibration algorithm (GLAaS) to derive absolute dose maps from images acquired with the Varian PV-aS500 electronic portal imager (based on amorphous silicon detectors) has been developed incorporating the dependence of detector response on primary and transmitted radiation and on field size. Detector calibration and algorithm validation were performed at different depths (10.0, 3.8, 1.5, and 0.8 cm) in solid water to investigate various application possibilities. Calibration data were obtained against ion chamber measurements. Validation experiments were performed on intensity-modulated fields and comparison was carried out against calculated dose maps as well as against film measurements. Split fields were acquired independently and PV-aS500 images were summed offline with the new algorithm allowing complex fields to be verified in conditions most closely resembling clinical conditions. Excellent results were obtained for the 3.8, 1.5, and 0.8 depths on a set of 34 modulated fields including both split and nonsplit fields. Applying the gamma index analysis (with distance to agreement and dose thresholds set to 3 mm and 4%, respectively), only 2.3% of the field area showed gamma>1 at 1.5 cm depth (8.1%, 3.1%, 2.7% at 10.0, 3.8, and 0.8 and 2.5% with films at 10 cm depth). Tests were also performed to verify GLAaS at gantry angles different from 0 degrees. No statistical differences were obtained for the comparison between split and nonsplit fields and between different gantry angles. Highly significant statistical differences were obtained when comparing independent samples of 240 fields verified either with GLAaS or with film. Fields verified with GLAaS presented a mean area with gamma>1 of 2.1 +/- 1.3% while for film this value was 3.9 +/- 3.4% (p<0.001). Absolute dosimetry proved to be reliable with the PV-aS500 detector with the GLAaS algorithm. The minimal settings at depths of 1.5 or 3.8 cm would allow the use of the detector at any gantry angle without the need for any special fixation tool. (C) 2006 American Association of Physicists in Medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据