4.6 Article

Augmented cancer resistance and DNA damage response phenotypes in PPM1D null mice

期刊

MOLECULAR CARCINOGENESIS
卷 45, 期 8, 页码 594-604

出版社

WILEY
DOI: 10.1002/mc.20195

关键词

p53; Chk1; Chk2; Wip1; p38 MAP kinase

资金

  1. NCI NIH HHS [CA100420] Funding Source: Medline

向作者/读者索取更多资源

The p53-induced serine/threonine phosphatase, protein phosphatase 1D magnesium-dependent, delta isoform (PPM1D) (or wild-type p53-induced phosphatase 1 (Wip1)), exhibits oncogenic activity in vitro and in vivo. It behaves as an oncogene in rodent fibroblast transformation assays and is amplified and overexpressed in several human tumor types. It may contribute to oncogenesis through functional inactivation of p53. Here, we show that the oncogenic function of PPM1D is associated with its phosphatase activity. While overexpressed PPM1D may be oncogenic, PPM1D null mice are resistant to spontaneous tumors over their entire lifespan. This cancer resistance may be based in part on an augmented stress response following DNA damage. PPM1D null mice treated with ionizing radiation display increased p53 protein levels and increased phosphorylation of p38 MAP kinase, p53, checkpoint kinase 1 (Chk 1), and checkpoint kinase 2 (Chk2) in their tissues compared to their wild-type (WT) counterparts. Male PPM1D null mice show a modest reduction in longevity, reduced serum insulin-like growth factor 1 (IGF-1) levels, and reduced body weight compared to WT mice. The PPM1D null mouse phenotypes indicate that PPM1D has a homeostatic role in abrogating the DNA damage response and may regulate aspects of male longevity. (c) 2006 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据