4.1 Article

Carbon isotopic composition of acetic acid generated by hydrous pyrolysis of macromolecular organic matter from the Murchison meteorite

期刊

METEORITICS & PLANETARY SCIENCE
卷 41, 期 8, 页码 1175-1181

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1945-5100.2006.tb00514.x

关键词

-

向作者/读者索取更多资源

Low molecular weight monocarboxylic acids, including acetic acid, are some of the most abundant organic compounds in carbonaceous chondrites. So far, the C-13- and D-enriched signature of water-extractable carboxylic acids has implied an interstellar contribution to their origin. However, it also has been proposed that monocarboxylic acids could be formed by aqueous reaction on the meteorite parent body. In this study, we conducted hydrous pyrolysis of macromolecular organic matter purified from the Murchison meteorite (CM2) to examine the generation of monocarboxylic acids with their stable carbon isotope measurement. During hydrous pyrolysis of macromolecular organic matter at 270-330 degrees C, monocarboxylic acids with carbon numbers ranging from 2 (C-2) to 5 (C-5) were detected, acetic acid (CH3COOH; C-2) being the most abundant. The concentration of the generated acetic acid increased with increasing reaction temperature; up to 0.48 mmol acetic acid/g macromolecular organic matter at 330 degrees C. This result indicates that the Murchison macromolecule has a potential to generate at least similar to 0.4 mg acetic acid/g meteorite, which is about four times higher than the amount of water-extractable acetic acid reported from Murchison. The carbon isotopic composition of acetic acid generated by hydrous pyrolysis of macromolecular organic matter is similar to-27 parts per thousand (versus PDB), which is much more depleted in C-13 than the water-extractable acetic acid reported from Murchison. Intramolecular carbon isotope distribution shows that methyl (CH3-)-C is more enriched in C-13 relative to carboxyl (-COOH)-C, indicating a kinetic process for this formation. Although the experimental condition of this study (i.e., 270-330 degrees C for 72 h) may not simulate a reaction condition on parent bodies of carbonaceous chondrite, it may be possible to generate monocarboxylic acids at lower temperatures for a longer period of time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据