4.6 Article

Initiated chemical vapor deposition of trivinyltrimethylcyclotrisiloxane for biomaterial coatings

期刊

LANGMUIR
卷 22, 期 16, 页码 7021-7026

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la0607858

关键词

-

资金

  1. NINDS NIH HHS [N01 NS 22347] Funding Source: Medline

向作者/读者索取更多资源

Organosilicon polymers show great utility as both biocompatible and electrically insulating materials. In this work, thin films of a novel organosilicon polymer are synthesized by initiated chemical vapor deposition utilizing trivinyltrimethylcyclotrisiloxane as a monomer and tert-butyl peroxide as a free-radical-generating initiator. Use of an initiator allows for the formation of polymer films at filament temperatures as low as 250 degrees C, significantly lower than those required to thermally polymerize the monomer species. The mild reaction conditions allow for the retention of all siloxane ring moieties within the resulting polymer. Films deposited at filament temperatures of 600 degrees C or higher exhibit damage to this moiety. The all-dry deposition process generates a highly cross-linked matrix material in which over 95% of the vinyl moieties present on the monomer units have been reacted out to form linear polymerized hydrocarbon chains. While each hydrocarbon backbone chain averages 8.9 monomer units in length, as evaluated by X-ray photoelectron spectroscopy analysis, each monomer unit is involved in three independent chains, resulting in polymer films of such high molecular weight that they are completely insoluble. Kinetic analysis of the deposition process indicates that the film formation rate is limited by the adsorption of reactive species to the deposition substrate, with an apparent activation energy of -23.2 kJ/mol with respect to the substrate temperature. These results are consistent with a surface growth mechanism, ideal for the coating of nonuniform or high aspect ratio substrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据