4.6 Article

Conduction model of SnO2 thin films based on conductance and Hall effect measurements

期刊

JOURNAL OF APPLIED PHYSICS
卷 100, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2229802

关键词

-

向作者/读者索取更多资源

Thin and porous SnO2 films (70 nm thick with grain size between 10 and 30 nm) have been prepared by e-beam evaporation onto alumina substrate provided with platinum electrodes. The Ohmic character of the contacts was preserved in all measurement conditions utilized for investigations. The dependence of electrical conduction on the composition of the ambient atmosphere has been studied by means of Hall and four point conductance measurements. The experiments were performed in different gas atmospheres containing N-2, O-2, and CO and at different operation temperatures (between room temperature and 420 degrees C). A relatively low effective mobility (5-30 cm(2) V-1 s(-1)) and a high charge carrier effective concentration (10(18)-10(19) cm(-3)) were deduced when using the single crystals recipe, as required by the established models for granular materials. The analysis of these experimental data showed the inadequacy of the geometrical models and effective medium theories to correctly extract the electrokinetic parameters from conductance and Hall measurements in the case of gas sensitive layers and to predict their temperature and gas composition dependences. The conventional approach fails because it considers the samples at different temperatures as one physical system while, in fact, the surface chemistry in oxygen atmosphere leads to new trap generation, which is equivalent to the doping level modification. The use of a nonconventional approach, taking into account the film interaction with the ambient through quasichemical equations, and associated mass action laws together with the surface scattering influence on the carrier mobility allowed for the understanding of the involved mechanisms and good fits for the experimental data. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据